#1 ID: 3a9d60b2

$$2|4 - x| + 3|4 - x| = 25$$

What is the positive solution to the given equation?

#2 ID: ba0edc30

$$x^2 - 2x - 9 = 0$$

One solution to the given equation can be written as $1+\sqrt{k}$, where k is a constant. What is the value of k?

- A) 8
- B) 10
- C) 20
- D) 40

#3 ID: fc3d783a

In the xy-plane, a line with equation 2y = 4.5 intersects a parabola at exactly one point. If the parabola has equation $y = -4x^2 + bx$, where b is a positive constant, what is the value of b?

#4 ID: 4661e2a9

$$x - y = 1$$
$$x + y = x^2 - 3$$

Which ordered pair is a solution to the system of equations above?

- A) $(1+\sqrt{3},\sqrt{3})$
- B) $(\sqrt{3}, -\sqrt{3})$
- C) $(1+\sqrt{5},\sqrt{5})$
- D) $(\sqrt{5}, -1 + \sqrt{5})$

#5 ID: f65288e8

$$\frac{1}{x^2+10x+25}=4$$

If x is a solution to the given equation, which of the following is a possible value of x + 5?

- $A) \frac{1}{2}$
- B) $\frac{5}{2}$
- C) 9/2
- D) 11 2

#6 ID: 2c288148

$$\sqrt{k-x} = 58 - x$$

In the given equation, k is a constant. The equation has exactly one real solution. What is the minimum possible value of 4k?

#7 ID: f2f3fa00

During a 5-second time interval, the average acceleration a, in meters per second squared, of an object with an initial velocity of 12 meters per second is defined by the equation

$$a = \frac{v_f - 12}{5}$$

velocity of 12 $a = \frac{v_f - 12}{5}$, where v_f is the final velocity of the object in meters per second. If the equation is rewritten in the form $v_f = xa + y$, where x and y are constants, what is the value of x?

#8 ID: fada6b03

$$2x^2 - 8x - 7 = 0$$

One solution to the given equation can be written as $\frac{8 - \sqrt{k}}{4}$, where k is a constant. What is the value of k?

#9 ID: 6ce95fc8

$$2x^2-2=2x+3$$

Which of the following is a solution to the equation above?

- A) 2
- B) $1 \sqrt{11}$
- C) $\frac{1}{2} + \sqrt{11}$
- D) $\frac{1+\sqrt{11}}{2}$

#10 ID: f5aa5040

In the xy-plane, a line with equation 2y = c for some constant c intersects a parabola at exactly one point. If the parabola has equation $y = -2x^2 + 9x$, what is the value of *c* ?

#11 ID: d0a53ef5

$$\sqrt{(x-2)^2} = \sqrt{3x+34}$$

What is the smallest solution to the given equation?

#12 ID: 2c05d312

$$57x^2 + (57b + a)x + ab = 0$$

In the given equation, a and b are positive constants. The product of the solutions to the given equation is kab, where k is a constant. What is the value of k?

- A) $\frac{1}{57}$
- B) 1/19
- C) 1
- D) 57

#13 ID: 1fe32f7d

$$-x^2 + bx - 676 = 0$$

In the given equation, b is a positive integer. The equation has no real solution. What is the greatest possible value of b?

#14 ID: c303ad23

If $3x^2 - 18x - 15 = 0$, what is the value of $x^2 - 6x$?

#15 ID: 2cb17792

$$y + k = x + 26$$

$$y - k = x^2 - 5x$$

In the given system of equations, k is a constant. The system has exactly one distinct real solution. What is the value of k?

#16 ID: 74473be4

Which quadratic equation has no real solutions?

A)
$$x^2 + 14x - 49 = 0$$

B)
$$x^2 - 14x + 49 = 0$$

C)
$$5x^2 - 14x - 49 = 0$$

D)
$$5x^2 - 14x + 49 = 0$$

#17 ID: 7bd10ef3

 $2x^2-4x=t$

In the equation above, t is a constant. If the equation has no real solutions, which of the following could be the value of t?

- A) -3
- B) -1
- C) 1
- D) 3

#18 ID: e11294f9

The solutions to $x^2+6x+7=0$ are r and s, where r < s. The solutions to $x^2+8x+8=0$ are t and u, where t < u. The solutions to $x^2+14x+c=0$, where c is a constant, are r+t and s+u. What is the value of c?

#19 ID: 03ff48d2

$$x(kx - 56) = -16$$

In the given equation, k is an integer constant. If the equation has no real solution, what is the least possible value of k?

#20 ID: 7028c74f

$$5(x+7) = 15(x-17)(x+7)$$

What is the sum of the solutions to the given equation?

#21 ID: 17d0e87d

$$\frac{14x}{7y} = 2\sqrt{w + 19}$$

The given equation relates the distinct positive real numbers w, x, and y. Which equation correctly expresses w in terms of x and y?

A)
$$w = \sqrt{\frac{x}{v}} - 19$$

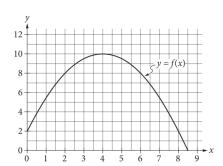
B)
$$w = \sqrt{\frac{28x}{14y}} - 19$$

C)
$$w = (\frac{x}{y})^2 - 19$$

D)
$$w = \left(\frac{28x}{14y}\right)^2 - 19$$

#22 ID: 66bce0c1

$$\sqrt{2x+6}+4=x+3$$


What is the solution set of the equation above?

A)
$$\{-1\}$$

$$(C)$$
 {-1,5}

D)
$$\{0, -1, 5\}$$

#23 ID: 97e50fa2

The graph of the function f, defined by

$$f(x) = -\frac{1}{2}(x-4)^2 + 10$$
, is shown in the xy-plane above. If the function g (not shown) is defined by

g(x) = -x + 10, what is one possible value of a such that f(a) = g(a)?

$$x^2 - 34x + c = 0$$

In the given equation, c is a constant. The equation has no real solutions if c > n. What is the least possible value of n?

#25 ID: 3d12b1e0

$$-16x^2 - 8x + c = 0$$

In the given equation, c is a constant. The equation has exactly one solution. What is the value of c?

#26 ID: 71014fb1

$$(x-1)^2 = -4$$

How many distinct real solutions does the given equation have?

- A) Exactly one
- B) Exactly two
- C) Infinitely many
- D) Zero

#27 ID: 4dc5c6f9

$$y = 18$$

$$y = -3(x - 18)^2 + 15$$

If the given equations are graphed in the *xy*-plane, at how many points do the graphs of the equations intersect?

- A) Exactly one
- B) Exactly two
- C) Infinitely many
- D) Zero

#28 ID: 2cd6b22d

$$5x^2 + 10x + 16 = 0$$

How many distinct real solutions does the given equation have?

- A) Exactly one
- B) Exactly two
- C) Infinitely many
- D) Zero

#**29** ID: e9349667

$$y = x^2 + 2x + 1$$

 $x + y + 1 = 0$

If (x_1, y_1) and (x_2, y_2) are the two solutions to the system of equations above, what is the value of $y_1 + y_2$?

- A) -3
- B) -2
- C) -1
- D) 1

#30 ID: b03adde3

 $If u - 3 = \frac{6}{t - 2}, \text{ what is t in terms of u } ?$

- A) $t = \frac{1}{u}$
- (B) $t = \frac{2u + 9}{u}$
- C) $t = \frac{1}{u 3}$
- D) $t = \frac{2u}{u-3}$

#31 ID: 1ce9ffcd

$$-9x^2 + 30x + c = 0$$

In the given equation, c is a constant. The equation has exactly one solution. What is the value of c?

- A) 3
- B) 0
- C) -25
- D) -53

#32 ID: 104bff62

$$\frac{x^2}{\sqrt{x^2 - c^2}} = \frac{c^2}{\sqrt{x^2 - c^2}} + 39$$

In the given equation, c is a positive constant. Which of the following is one of the solutions to the given equation?

- A) -*c*
- B) $-c^2 39^2$
- C) $-\sqrt{39^2 c^2}$
- D) $-\sqrt{c^2 + 39^2}$

#33 ID: 7dbd46d9

$$8x + y = -11$$

$$2x^2 = y + 341$$

The graphs of the equations in the given system of equations intersect at the point (x, y) in the xy-plane. What is a possible value of x?

- A) -15
- B) -11
- c) 2
- D) 8

#**34** ID: 158591f0

$$x(x + 1) - 56 = 4x(x - 7)$$

What is the sum of the solutions to the given equation?

#35 ID: 6aefc52b

$$y = -2.5$$

$$y = x^2 + 8x + k$$

In the given system of equations, k is a positive integer constant. The system has no real solutions. What is the least possible value of k?

#**36** ID: c9417793

$$|x - 9| + 45 = 63$$

What is the sum of the solutions to the given equation?

#37 ID: 30281058

In the xy-plane, the graph of $y = x^2 - 9$ intersects line p at (1,a) and (5,b), where a and b are constants. What is the slope of line p?

- A) 6
- B) 2
- C) -2
- D) -6

#38 ID: 4fb8a648

$$y = x + 9$$

$$y = x^2 + 16x + 63$$

A solution to the given system of equations is (x, y). What is the greatest possible value of x?

- A) -6
- B) 7
- C) 9
- D) 63

#**39** ID: 133f3e41

$$\frac{20}{p} = \frac{20}{q} - \frac{20}{r} - \frac{20}{s}$$

The given equation relates the positive variables p, q, r, and s. Which of the following is equivalent to q?

- A) p + r + s
- B) 20(p+r+s)
- C) $\frac{prs}{pr+ps+rs}$
- D) $\frac{prs}{20p + 20r + 20s}$

#40 ID: 5910bfff

$$D = T - \frac{9}{25}(100 - H)$$

The formula above can be used to approximate the dew point D , in degrees Fahrenheit, given the temperature T , in degrees Fahrenheit, and the relative humidity of H percent, where H > 50. Which of the following expresses the relative humidity in terms of the temperature and the dew point?

A)
$$H = \frac{25}{9}(D-T)+100$$

^{B)}
$$H = \frac{25}{9}(D-T)-100$$

C)
$$H = \frac{25}{9}(D+T)+100$$

D)
$$H = \frac{25}{9}(D+T)-100$$

#**41** ID: fbb96bb1

$$x - 29 = (x - a)(x - 29)$$

Which of the following are solutions to the given equation, where a is a constant and a > 30?

III. 29

- A) I and II only
- B) I and III only
- C) II and III only
- D) I, II, and III

#42 ID: 77c0cced

$$y = 2x^2 - 21x + 64$$
$$y = 3x + a$$

In the given system of equations, a is a constant. The graphs of the equations in the given system intersect at exactly one point, (x, y), in the xy-plane. What is the value of x?

- A) -8
- B) -6
- c) 6
- D) 8

#43 ID: 1697ffcf

In the xy-plane, the graph of $y = 3x^2 - 14x$ intersects the graph of y = x at the points (0, 0) and (a, a). What is the value of a?

#**44** ID: 5edc8c98

$$64x^2 - (16a + 4b)x + ab = 0$$

In the given equation, a and b are positive constants. The sum of the solutions to the given equation is k(4a+b), where k is a constant. What is the value of k?

#45 ID: ff2e5c76

$$x^2 - 40x - 10 = 0$$

What is the sum of the solutions to the given equation?

- A) 0
- B) 5
- C) 10
- D) 40

#46 ID: 2c5c22d0

$$y = x^2 + 3x - 7$$

 $y - 5x + 8 = 0$

How many solutions are there to the system of equations above?

- A) There are exactly 4 solutions.
- B) There are exactly 2 solutions.
- C) There is exactly 1 solution.
- D) There are no solutions.

#47 ID: fc3dfa26

$$\frac{4x^2}{x^2-9} - \frac{2x}{x+3} = \frac{1}{x-3}$$

What value of x satisfies the equation above?

- A) -3
- $-\frac{1}{2}$
- C) 1/2
- D) 3

#**48** ID: 6011a3f8

$$64x^2 + bx + 25 = 0$$

In the given equation, b is a constant. For which of the following values of b will the equation have more than one real solution?

- A) -91
- B) -80
- C) 5
- D) 40

#49 ID: 9cb9beec

$$y = -1.50$$

$$y = x^2 + 8x + a$$

In the given system of equations, a is a positive constant. The system has exactly one distinct real solution. What is the value of a?

#50 ID: c8e9a011

$$\frac{12}{n} - \frac{2}{t} = -\frac{2}{w}$$

The given equation relates the variables n, t, and w, where n>0, t>0, and w>t. Which expression is equivalent to n?

- A) 12tw
- B) 6(t w)
- C) $\frac{w-t}{6tw}$
- D) $\frac{6tw}{w-t}$

#51 ID: a54753ca

In the *xy*-plane, the graph of the equation $y = -x^2 + 9x - 100$ intersects the line y = c at exactly one point. What is the value of c?

- A) $-\frac{481}{4}$
- B) -100
- C) $-\frac{319}{4}$
- D) $-\frac{9}{2}$

#**52** ID: 3a01a5ee

$$|-5x + 13| = 73$$

What is the sum of the solutions to the given equation?

- A) $-\frac{146}{5}$
- B) -12
- C) 0
- D) $\frac{26}{5}$

#53 ID: 58b109d4

$$x^2 + y + 7 = 7$$

$$20x + 100 - y = 0$$

The solution to the given system of equations is (x, y). What is the value of x?